H->WW: STUDY OF LOWPT EXCESS Lina Galtieri, Simone Pagan Griso (LBNL), Bill Quayle (Wisconsin and LBNL) #### **Outline** - The excess in the low lepton Pt analysis - Comparison of signal and background kinematic distributions - Flavor dependence of excess - Summary # STUDIES of LOWPT $\Delta\Phi_{11}$ EXCESS LowpT analysis not included in present paper, because of an excess in the $\Delta\Phi$ distribution which is being investigated. It appears early in the event selection for the njet=0 sample Corrinne March 14 Summary (Ischia Workshop) - How significant is this? Consider integral of first 9 bins (0 < Δφ < 1.77, close to cut value) - → Predict 169.4 events, observe 211 - → stat-only p-value 0.0011 - → add W+jets systematic → 0.03 - \rightarrow add all BG syst. \rightarrow 0.18 - → add signal at 125 GeV → 0.43 (11 additional events) → ... Recent studies by Antonio Boveia identified the sample where the excess happens: events with a subleading muon # SEQUENCE OF $\Delta\Phi_{11}$ PLOTS The excess is seen at the pre-selection level (Cut 11) and persists through subsequent background reducing cuts ### Cut 11 (preselection) #### Jet Veto ### Njet=0 final plot ## H->WW->IvIv Low PT CutFlow ### How significant is the excess? | | Signal [125 GeV] | ww | $WZ/ZZ/W\gamma^*$ | ttbar | Single Top | Z/γ^*+jets | W+jets(d-d) | Total Bkg.(d-d) | Seen | |---|---|--|--|---|--|--|--|---|-------------------------| | $E_{\mathrm{T,rel}}^{\mathrm{miss}} > 45,25$ GeV, Cut 11 | 21 ± 1 | 118 ± 14 | 52 ± 8 | 591 ± 31 | 62 ± 4 | 265 ± 116 | 113 ± 111 | 1201 ± 170 | 1235 | | 0j: jet veto | 14 ± 1 | 79 ± 7 | 39 ± 7 | 13 ± 3 | 8.9 ± 1.9 | 145 ± 68 | 92 ± 60 | 376 ± 85 | 406 | | 0j: $m_{\ell\ell} < 50~{ m GeV}$ | 12 ± 1 | 50 ± 4 | 27 ± 6 | 6.5 ± 1.6 | 5.1 ± 1.2 | 123 ± 55 | 57 ± 40 | 268 ± 67 | 297 | | 0j: $p_{\mathrm{T},\ell\ell} > 45,30~\mathrm{GeV}$ | 9.8 ± 0.9 | 39 ± 4 | 20 ± 4 | 5.5 ± 1.3 | 4.7 ± 1.1 | 8.4 ± 4.1 | 37 ± 20 | 115 ± 14 | 143 | | 0j: $\Delta\phi_{\ell\ell} < 1.8$ | 8.9 ± 0.8 | 35 ± 3 | 19 ± 4 | 5.2 ± 1.3 | 4.3 ± 1.1 | 4.3 ± 1.8 | 29 ± 16 | 96 ± 11 | 124 | | 1j: exactly one jet 1j: b-jet veto (25 GeV, 80% eff) 1j: $p_{\rm T}^{\rm tot} < 30 \; {\rm GeV}$ 1j: $\Delta \phi_{\ell\ell} < 1.8$ | 5.0 ± 0.4 4.6 ± 0.4 3.2 ± 0.6 2.2 ± 0.4 | 25 ± 16 24 ± 14 17 ± 5 7.2 ± 2.4 | 10 ± 7 9.5 ± 5.8 8.0 ± 5.6 5.5 ± 3.2 | 102 ± 37 29 ± 13 13 ± 4 5.2 ± 1.7 | 27 ± 9 8.7 ± 3.8 4.3 ± 1.5 2.3 ± 0.8 | 81 ± 39
75 ± 36
33 ± 10
5.2 ± 2.9 | 21 ± 26 20 ± 23 13 ± 9 3.9 ± 3.2 | 266 ± 107 165 ± 72 89 ± 26 29 ± 9 | 316
217
120
40 | After Jet Veto: 79 39 145 92 376 after $\Delta\Phi_{\text{II}} < 1.8$: 35 19 4.3 29 96 124 | | Total Backg | signal | Observed | Backg Hypothesis | |------------------------|--------------|---------------|----------|--------------------| | After Jet Veto | 376 ± 85 | 14 ± 1 | 406 | good | | with $\Delta\Phi$ <1.8 | 170 ± 12 | 11 ± 1 | 212 | excess too large | | | | | | 41 ev, expect 11 | | After all cuts | 96 ± 11 | 8.9 ± 0.8 | 124 | excess 28 ± 12 | | (∆Ф<1.8) | | | | 28 ev, expect 9 | 406 ### H->WW->IvIv Low PT Excess #### What can the excess be due to? - A Normalization factor of one of the backgrounds - Mismodeling of one (or more) of the backgrounds - Mismeasurement of one of the variables, not reproduced by the simulation Regarding point 1, we can look at the $\Delta\Phi_{ll}$ dependence of each background, to see if any of them is enhanced in the excess region. This is what we will look at in the next few slides: Note that background modeling for lowpT is same as for the nominal analysis # Some plots at Cut11 (preselection) ### Not all backgrounds are included in these plots $\Delta \phi_{||}$ plots: zdy, WW, NonWW are similar to signal for $\Delta \phi_{||} < 1.8$ The qq->WW and gg->WW are shown separately to check their relative contributions at different cut levels. No change in the ratio observed. # Plots at Cutj0_0jet (Jet Veto) The two $\Delta\Phi$ plots have different backgrounds . Not all background are shown on the left plots #### Note that: Zdy is now smaller than W+jets and WW for $\Delta \Phi$ <1.8 $\Delta \Phi$ for W+jets and WW are not very different from the signal (within the poor statistics) ## Some Plots after the Mll, Ptll Cuts The Pt_{tt} cut has reduced the sample from 297 events to 143 events. Most of the events removed with this cut are in the region above 2.0. ## Two plots at Cutt2 Here we see (right plot) that the W+jets, the WW and the NonWW backgrounds all, have the same shape as the signal. A normalization problem of one of them could accommodate the excess. This is probably already known. Z->tau tau shown in this plot. This is obtained with teh collinear Approximation at the moment. Better modeling is being contemplated. ## Flavor Dependence of Excess Need to understand how Antonio's break trough (contamination of the subleading muons) enters into the excess. #### Cutflow for different flavors | Lepton channel | ee | μμ | eμ | all | | |----------------|-----------------|-------------------------------|----------------|----------------|-------------------| | | | | | | | | signal | 2.2 ± 0.2 | 5.1 ± 0.3 | 13.3 ± 0.9 | 20.6 ± 1.3 | | | Total Back | 159 ± 24 | 271 ± 33 | 770 ± 114 | 1201 ± 170 | | | observed | 144 | 263 | 828 | 1235 | | | | | | | | | | signal | 1.4 ± 0.1 | 3.3 ± 0.3 | 8.9 ± 0.8 | 13.6 ± 1.2 | | | Total Back. | 41 ± 9 | 80 ± 15 | 255 ± 63 | 376 ± 85 | | | observed | 43 | 81 | 282 | 406 | | | | | | | | | | signal | 0.76 ± 0.08 | > 45,30 GeV
1.6 ± 0.2 | 7.5 ± 0.7 | 9.8 ± 1.9 | 1 | | Total Back. | 9.7 ± 3.1 | 15 ± 2 | 90 ± 10 | 115 ± 14 | <pre>excess</pre> | | observed | 6 | 20 | 117 | 143 | CAGGGG | | - 12 | Final Samp | ole, with $\Delta\Phi$ | < 1.8 | | | | signal | 8.9 ± 0.8 | 0.7 ± 0.1 | 1.6 ± 1.1 | 6.6 ± 0.6 | | | Total Back. | 9.3 ± 3.0 | 14.2 ± 2.3 | 73 ± 8 | 96 ± 11 | <pre>excess</pre> | | Observed | 5 | 19 | 100 | 124 | | No excess in ee, excess in both $e\mu$ and $\mu\mu$ # FINAL PLOTS for ee, μμ, eμ, all Low statistics, but consistent with no excess. Plots with muons show excess. ## Summary Looked at shapes of of the $\Delta\phi_{ll}$ distributions for different backgrounds to see if any of them expects an enhancement where we see the excess. Turns out that: WW, W+jets and NonWW backgrounds (with present statistics) have a distribution not too different from the signal in the $\Delta\phi_{ll}$ < 1.8 region (slide 9). The cut flow for different flavors shows the same trend seen by Antonio, but not as pronounced because he split the e-high μ -low and the μ -high e-low samples. More studies to follow